Toward a Measurement Information Infrastructure

Mark Kuster, Pantex Metrology

Motivation

- The measurement world automates test & calibration . . .
- and other metrology software exists
 - Lab management systems
 - Analytical software for uncertainty, etc.
- Many local benefits
- ... but the systems by and large do not communicate.

Why haven't we automated the bigger picture?

NCSLI Metrologist started a conversation.

Background Vehicles Current Paradigm MII Requirements vs. Technology Summary

Metrologist MII Column

Toward a Metrology
Information Infrastructure

Measurement Information Vehicles

- Instrument data sheets (specifications)
 - Designed and warranted performance
 - Manufacturers → potential customers & instrument users
 - Manufacturers, re-specifiers, vendors, specifiers, users
- Statements of accreditation (SOAs)
 - A measuring entity's (ME) accredited services
 - CIPM MRA, unaccredited "scopes of capability"
 - MEs \rightarrow accreditation body (AB) \rightarrow MEs, instrument users
- Certificates (test, calibration, etc.)
 - Measured performance
 - \bullet MEs \rightarrow instrument users
- Measurement information circulates through these documents.

ackground **Vehicles** Current Paradigm MII Requirements vs. Technology Summary

Measurement Information Flow

Small excerpt from a vast network

Typical Manual Information Processing Tasks

- Search for information
 - Acquire candidate spec sheets from vendors
 - Analyze specifications to select instruments
 - Search AB web sites to obtain SOAs
 - Examine CMCs to find suitable MEs
- Validate information
 - Validate certificates against SOAs
 - Reconcile certificate content against requisitions
 - Verify measurement results vs. specifications
 - Initiate non-conformance notices

Typical Manual Information Processing Tasks

- Maintain information
 - Augment SOAs as they expire
 - Copy calibration results to measurement software
 - Update data files and uncertainty budgets
 - Summarize measurement results on certificates
 - Send certificates to customers
 - Transfer test results to software systems
 - Archive and retrieve documents
- Analyze information
 - Determine calibration or verification points
 - Transform uncertainty analyses into SOA CMCs

Search A2LA Directory of Accredited Organizations

ackground Vehicles Current Paradigm MII Requirements vs. Technology Summary

Accredited Lab Search Example

Your query returned 24 records

Certificate#	Organization	Contact	City, State	Country	Phone	Comm Code	Field	Standard	Expiration
1009.01	Accu-Check Instrument Service, Inc.	Robert Vaughan	Lancaster, OH	United States	740 654 0500	C1	Calibration	ISO/IEC 17025:2005	07/31/2016
2171.01	ACR Technical Services, Inc.	Richard Hogan	Newport News, VA	United States	757 890 0460	C1	Calibration	ISO/IEC 17025:2005	10/31/2016
3467.01	Al Hoty Calibration Services - A Branch of Al Hoty Co. Ltd.	Wendell Arevalo	Al Khobar 31952,	Saudi Arabia	00966 3 864 4150	C1	Calibration	ISO/IEC 17025:2005	08/31/2017
2260.01	Alpha Controls & Instrumentation Inc.	Slava Peciurov	Markham, Ontario L3R 3V8,	Canada	905 477 2133 x228	C1	Calibration	ISO/IEC 17025:2005	01/31/2017
71.05	Bowser-Morner, Inc.	Robin Wolfe	Dayton, OH	United States	937 236 8805 x 226	C1	Calibration	ISO/IEC 17025:2005	01/31/2016
3781.01	Cal-Tec, Inc.	Chris Grevemberg	Broussard, LA	United States	337 839 0450	C1	Calibration	ISO/IEC 17025:2005	05/31/2017
2147.01	ENI Labs	Andrew Burd	Fort Wayne, IN	United States	260 471 6775	C1	Calibration	ISO/IEC 17025:2005	03/31/2016
2496.01	Eustis Co., Inc./Pyrocom Calibration Lab	Bill LeMesurier	Lynnwood, WA	United States	425 423 9996	C1	Calibration	ISO/IEC 17025:2005	10/31/2016

Searching for "Dry well"

Liquid-In-Glass Thermometers ³	32 °F	0.6 ℉	Comparison to digital thermometer in water bath at fixed point (32 °F)	
	(68 to 662) °F	0.52 °F	Dry block calibrator	

Searching for "Dry well"

Calibration of	
Thermocouple Wires ³ –	
Туре	
J,K,T,E,R,S,C,U,N 32 °F 0.61 °F Ice bath/precision thermometer CMART 25 calit Fluke 5502A	
Type J (91) °F to (660) °F 0.43 °F Fluke metrology	
Type K (91) °F to (660) °F 0.43 °F CMART 25 calle	rator
Type T (91) °F to (400) °F 0.43 °F Fluke 5502A	
Type R (91) °F to (662) °F 0.43 °F	
Type S (91) °F to (662) °F 0.43 °F	
Type E (91) °F to (662) °F (0.43 °F (91) °F to (662) °F (0.43 °F (
Type C (91) °F to (662) °F (0.43 °F (91) °F to (662) °F (0.43 °F (0.43 °F (91) °F to (662) °F (0.43 °F	
Type N (91) °F to (662) °F (0.43 °F)	

Searching for "Dry well"

Indirect Verification of Rockwell Hardness Testers ³				
Rockwell and Portable Rockwell	HRA: (60.5 to 69) HRA (70 to 79) HRA (80 to 92) HRA	0.42 HRA 0.41 HRA 0.29 HRA	Indirect verification per ASTM E18, E110	
	HRBW: (0 to 59) HRBW (60 to 79) HRBW (80 to 100) HRBW	1.5 HRBW 0.92 HRBW 0.66 HRBW		
	HRC: (20 to 35) HRC (35 to 60) HRC (60 to 80) HRC	0.59 HRC 0.51 HRC 0.47 HRC		

- 24 scopes to search
- Too often fruitless
- Many other possible search terms
- International Accreditation New Zealand (IANZ)
- With several ABs, the USA multiplies the difficulty.
- International operations also use multiple ABs.
- Makes your lab a needle in the haystack
- Similar problem for instrument searches
- No fun!

An Easier Way

Flights

MII

What if we applied similar technology to instrument and accredited lab searches?

What about traceability, uncertainty, error corrections, ...?

Definition

Measurement Information Infrastructure—a set of normative standards that define data structures, taxonomies, service protocols and security for locating, communicating and sharing measurement information

Automated Possibilities

- Publish information
 - OEM software creates spec sheets for vendors to post.
 - Lab software writes and posts CMCs
 - AB SW generates and posts SOAs.
- Find information
 - A user enters measurement requirements into MII SW.
 - User SW locates suitable instruments and labs.
 - The user selects the instrument and lab.
 - Software writes purchase orders and transmits requirements.

Automated Possibilities

- Validate and use information
 - Lab software creates test points from the requirements and MII certs for its equipment.
 - Lab software generates an automated measurement procedure.
 - Lab software tests the instrument and issues a calibration cert.
 - User software validates the certificate.
 - User software initiates any non-conformance actions.
 - User software updates systems with corrections & uncertainty.
 - Software validates data at every step.

ackground Vehicles Current Paradigm MII **Requirements vs. Technology** Summary

Centered on Measurement Data

Absolute Uncertainty Specifications

±5 °C of Calibration Temperature

		Absolute Uncertainty					
Voltage Range	Frequency Range	AC/DC Transfer Mode ± ppm 2 Years	Measurement Mode ± (ppm of Reading + μV)				
			90 Days	1 Year	2 Years		
	10 Hz - 20 Hz		1700 + 1.3	1700 + 1.3	1700 + 1.3		
	20 Hz- 40 Hz		740 + 1.3	740 + 1.3	740 + 1.3		
	40 Hz - 20 kHz		420 + 1.3	420 + 1.3	420 + 1.3		
	20 kHz - 50 kHz		810 + 2.0	810 + 2.0	820 + 2.0		
2.2 mV	50 kHz - 100 kHz		1200 + 2.5	1200 + 2.5	1200 + 2.5		
	100 kHz - 300 kHz		2300 + 4.0	2300 + 4.0	2300 + 4.0		
	300 kHz - 500 kHz		2400 + 6.0	2400 + 8.0	2600 + 8.0		
1	500 kHz - 1 MHz		3200 + 6.0	3500 + 8.0	5000 + 8.0		

Similar information

- Measured quantity (electric potential difference)
- Influence quantities (frequency)
- Quantity values (ranges, MPE, results, uncertainty)

Centered on Measurement Data

Parameter/Range	Frequency	CMC ^{2, 4, 5, 6, 7} (±)	Comments
AC Voltage – Generate, Fixed Points			
2 mV	10 Hz, 20 Hz, 100 Hz, 1 kHz, 10 kHz, 20 kHz, 50 kHz 100 kHz	0.02 % 0.022 %	Fluke 792 AC/DC Transfer Standard with AC Divider

Similar information

- Measured quantity (electric potential difference)
- Influence quantities (frequency)
- Quantity values (ranges, MPE, results, uncertainty)

Centered on Measurement Data

Calibration Data						
Nominal Value	Measurement Result	Limits of Lower Limit	of Error Upper Limit	Expanded Uncertainty		
ERROR						
plied						
shown						
0.00	xxx.x	-2350.0	2350.0	200 μV/V		
0.00	xxx.x	-1390.0	1390.0	200 μV/V		
0.00	xxx.x	-1070.0	1070.0	200 μV/V		
	Value ERROR plied shown 0.00 0.00	Nominal Measurement Result ERROR plied shown 0.00 XXX.X 0.00 XXX.X	Nominal Value Measurement Result Limits of Lower Limit ERROR	Nominal Value Measurement Result Limits of Error Lower Limit Upper Limit ERROR plied shown 0.00 XXX.X -2350.0 2350.0 0.00 XXX.X -1390.0 1390.0		

Similar information

- Measured quantity (electric potential difference)
- Influence quantities (frequency)
- Quantity values (ranges, MPE, results, uncertainty)

ackground Vehicles Current Paradigm MII **Requirements vs. Technology** Summary

Semantic Data Structure-Old Hat

- VIM, ISO 80000-x: ontological foundation & taxonomies
- *IEEE 1671.x*: automatic test markup language (ATML)
- SysML: systems modeling language—ISO 80000-1 quantity kinds, measurement units
- NASA: automatic ATML generation from LabVIEW code and SysML equipment descriptions
- NI: Translator from ATML test descriptions to executable code
- MIMOSA: infrastructure for process industries to exchange operations and maintenance data
- METBENCH: arbitrary equations for instrument specs, parameters bound to measurement quantities at cal time
- METAS: traceability structure with upstream correlations
- GTC: GUM Tree Calculator—uncertain numbers to propagate uncertainty via scripting

Other MII Elements

- File formats
 - XML (eXtensible Markup Language) for one, many others
- Communications Protocols
 - SOAP (Simple Object Access Protocol)
 - REST (Representational State Transfer)
- Security
 - Public certificates to verify signatures & logos
 - Encryption for confidentiality if required
- Norms (Standards)
 - Metrology & commerce revolve around them.

Research & Development

- MII-aware software
 - Create, manipulate and process MII documents
 - Standard calculation libraries for interfacing any software
 - Automation changes the economics, creates opportunities
 - Makes manually impractical refinements practical
- Metrology itself
 - Extended traceability schemes
 - Instrument modeling
 - Libraries of measurement models

Current Status-Fragmented

- Conceptual MII document models
 - Instrument specifications
 - Accreditation scopes
 - Test and calibration certificates
 - Availabe on the MII Community page at ncsli.org
- Some exploratory software development
- Independent efforts on many puzzle pieces

MII Forward Action

Plenty of MII work proper ...

- Identify and involve stakeholders
- Identify useful ISO, IEEE, etc. standards
- Research data formats for MII documents
- Research metrology taxonomies
- Refine and implement data models
- Research web services options
- Design web service protocols for MII documents
- Draft MII-specific standards, recommended practices

MII Support Work

- ... and plenty of enabling development work.
 - Involve existing developers
 - Develop software
 - Demo document editors
 - Demo applications
 - Demo web site(s)
 - Software libraries, APIs for developers
 - Metrology research-more accurate data in practitioners' hands

Conclusion

- The requisite systems and technology already exist.
- We lack a consensus

Motivation

An MII definition would empower developers to incorporate MII data processing features into future versions of already ubiquitous measurement-related software, which in turn would raise opportunities to simplify and streamline many tedious and error-prone tasks, improve traceability and generally increase the value and quality of testing, calibration and measurement.

Questions

Acknowledgments

- MSA
- NCSL International
- Pantex Metrology
- Cherine-Marie Kuster

Volunteers? Contact us at ncsli.org, mjk@ieee.org.

Thank You for your time! Questions?

