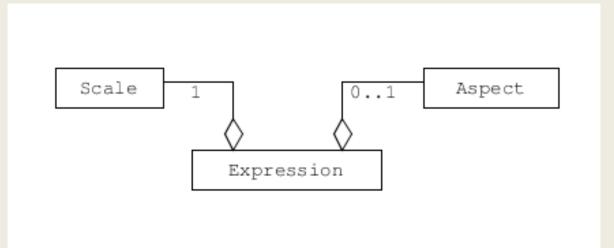
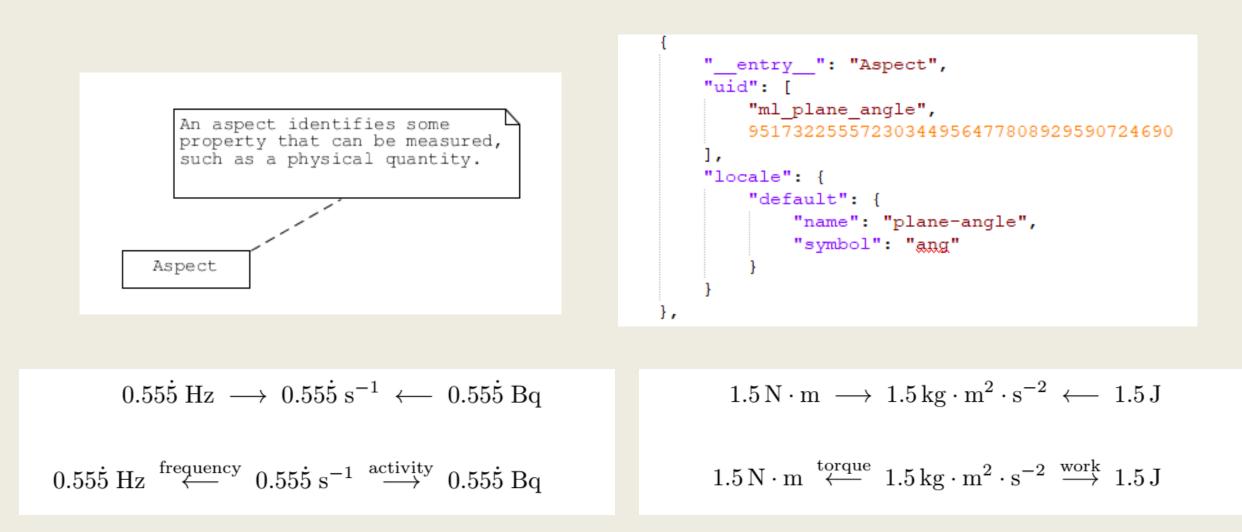
The M-layer – overview of structure


Blair Hall

(not for circulation)

Expressions

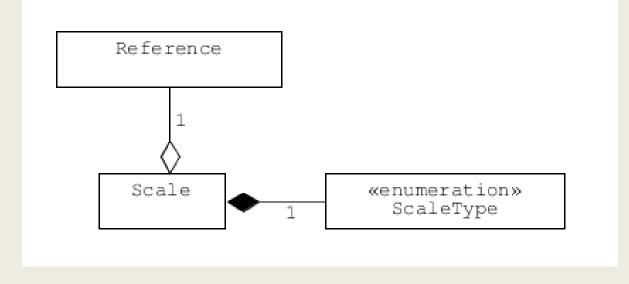
(conventional) expression = $\{x\} [x]$ $= 1.5 \,\mathrm{nm}$ (e.g.)


 $(M-layer) \ expression = \{x\} \llbracket x \rrbracket \mid \{x\} \llbracket x \rrbracket \langle x \rangle$ $(e.g.) \{1.5\} [[nm] ratio]]$ (or) $\{1.5\}$ [[nm] ratio]] $\langle length \rangle$

Aspect

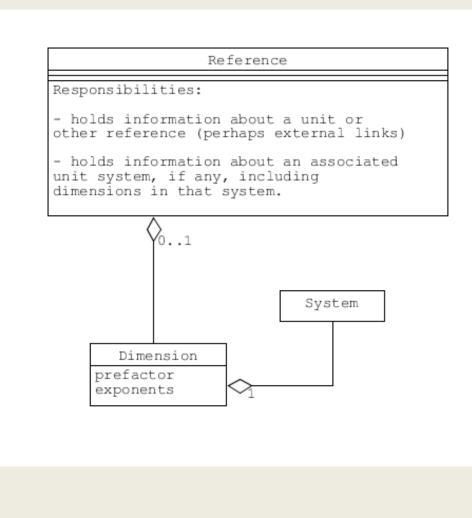
Aspect is an optional third component in the expression of measured data. It may be thought of as the 'kind of quantity' but is more general in scope.

It's role is to disambiguate scale conversions (so it is not always needed)



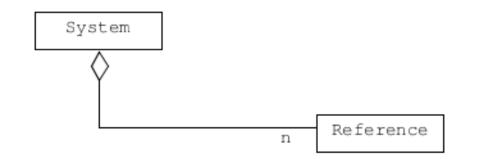
Scales

A scale associates a Reference with a particular type of scale.


We also designate some scales as "systematic" (when the name is composed of products of powers of base units or prefixed base units).

```
"__entry__": "Scale",
"uid": [
    "ml_si_radian_ratio",
    273301153578020696303516833405033923738
],
"reference": [
    "si_radian",
    311561499536022904630229742672799278060
],
"scale_type": "ratio"
```


},


References – to existing standards


```
" entry ": "Reference",
   "uid": [
       "si kilogram",
       188151331508313165897603768130808181784
   ],
   "locale": {
       "default": {
            "name": "kilogram",
            "symbol": "kq"
   },
   "system": {
       "uid": [
            "si system",
            88156805987886421108624908988601219537
       ],
       "dimensions": "[1, 0, 0, 0, 0, 0, 0]",
        "prefix": [
            "1",
            111
   },
   "UCUM": {
       "code": "kg",
       "description": "kilogram"
3.
```

Unit systems

The system contains a sequence of 'n' links to References, which are base units of the system. This establishes the order of dimensional exponents for units belonging to the system.

" entry ": "UnitSystem", "uid": ["si system", 88156805987886421108624908988601219537 1, "name": "SI", "basis": ["si_kilogram", 188151331508313165897603768130808181784], "si metre", 61268972265076316018593147152102406832], "si second", 110730041758233939215703442037761569190], "si ampere", 264081801568151063132838497538090031099], "si kelvin", 25703533220788919988679332108037098600], "si mole", 96713855510406467826626480289106173630], "si candela", 107700549721211215242458620140782394628

Scale type

«enumeration» ScaleType
ratio interval bounded_interval ordinal nominal

Scale types help with conversion rules

Two scales of the same type and for the same aspect are equivalent in terms of the information carried by data.

There is a strict hierarchy among types, allowing certain scale type promotions without loss of information.

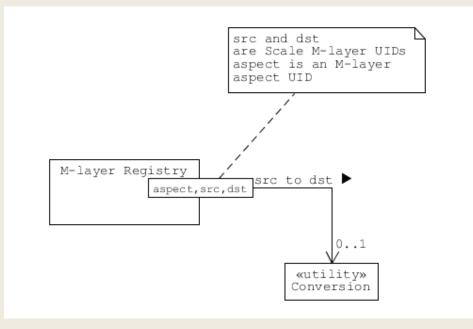
Type	Invariance transforms
ratio interval bounded-interval ordinal nominal	$\begin{array}{l} x' = a x, a > 0 \\ x' = a x + b \ , a > 0 \\ x' = (a x - x'_{\rm low}) {\rm mod} x'_{\rm range} + {x'_{\rm low}}^{1} \\ x' = {\rm any \ monotonic \ increasing \ function \ of \ x} \\ x' = {\rm any \ 1-to-1 \ substitution \ for \ x} \end{array}$

¹The range of target values is $[x'_{low}, x'_{low} + x'_{range}]$. The operator 'mod' divides the left argument by the right and returns the remainder with the same sign as the right argument.

Generic conversion

Asymmetric rules are required

Unidirectional conversions are defined (without specifying an aspect).

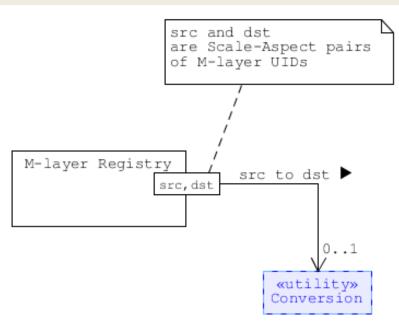

```
"__entry__": "Conversion",
    "src": [
        "ml_si_volt_ratio",
        324370471112617696659965827203196197232
],
    "dst": [
        "ml_si_kg.m2.s-3.A-1_ratio",
        99600280752733052556150747434649814921
],
    "function": "lambda x: x",
    "parameters": {}
},
```

scale-pair		function	
src	dst		
$\llbracket [m], ratio \rrbracket$	$\llbracket [mm], ratio \rrbracket$	$y = x \times 10^3$ $y = x + 273.15$	
$[[^{\circ}C], interval]$	[[kelvin], ratio]]	y = x + 273.15	
		M-layer Registr	src and dst are M-layer Scale UIDs fn to convert src to dst 01 (wutility) Conversion

Aspect-specific conversion

Unidirectional conversions can be defined for specific aspects.

These definitions take precedence over generic conversion rules


aspect	scale-pair		function
	src	dst	
angle	[[rad], bounded]	$\llbracket [\circ], bounded \rrbracket$	$y = (180/\pi x) \mod 360$
temperature	$\llbracket [kelvin], ratio \rrbracket$	$\llbracket [^{\circ}C], interval \rrbracket$	y = x - 273.15

```
" entry ": "ScalesForAspect",
"aspect": [
    "ml energy",
    12139911566084412692636353460656684046
],
"src": [
    "ml si kg.m2.s-2 ratio",
    92059200321763611267904598246242830863
],
"dst": [
    "ml_si_joule_ratio",
    165050666678496469850612022016789737781
1,
"function": "lambda x: x",
"parameters": {}
```

Casting

Castings are transformations that potentially change the information content of data.

To change an aspect requires casting and to change between scale types which may degrade information requires casting

scale-aspect	scale-aspect	function
ST C	dst	
$[[\text{kg} \cdot \text{m}^2 \cdot \text{s}^{-2}], \text{ratio}], \langle \text{undefined} \rangle$	$[[N \cdot m], ratio], \langle torque \rangle$	y = x
$\left[\left[\mathrm{kg}\cdot\mathrm{m}^{2}\cdot\mathrm{s}^{-2}\right],\mathrm{ratio}\right],\left\langle\mathrm{undefined}\right\rangle$	$\llbracket [J], ratio \rrbracket, \langle work \rangle$	y = x

That's it is a second s

[]

888888

11

0000000000

111111111

a a a a a a a

CallaghanInnovation New Zealand's Innovation Agency